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Abstract

We develop a new approach for testing conditional asset pricing models that avoids the
issues in using realized returns as a proxy for expected returns. Testable restrictions
are developed by asking what realized returns we would observe, given the pricing
model under scrutiny. The new reverse testing approach is used to test the Merton
(1973, 1980) model and a long-standing risk-return puzzle: the price of market risk
has often turned out to be negative and insignificant. Comparing the price of market
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1. INTRODUCTION

Tests of asset pricing models evolved from the evaluation of their unconditional cross-

sectional implications into tests of their conditional time series implications in the late 1980s

(Ferson, 2003). However, as tests of conditional implications focus on period-by-period

return properties instead of long-term averages, the tests come with a cost. Using realized

returns as a proxy for expected returns is a concern in the conditional tests but not in the

unconditional tests as there are a number of reasons to believe that realized returns are

not adequate proxies for the conditional expected returns (see, e.g., Brav et al., 2005). For

example, Greenwood and Shleifer (2014) document that investors possess high expectations

on future returns when rational expectations asset pricing models suggest a low return. A

common solution has been to estimate jointly an expectations model – the typical choice

being a linear one (Harvey, 2001). However, it suffers from the same problem – the choice

of forecasting variables are selected ex post to have predictive power over realized returns.

Although a lot of work on finding better proxies for the expected returns have been done, the

suggested solutions (e.g., the use of surveys) are not often suitable for tests of conditional

asset pricing models.

In this paper, we introduce a new approach to test conditional asset pricing models

which avoids the issues in using realized returns as a proxy for expected returns as well

as the need to use an empirical expectations model. We turn the tables and ask what

realized returns we would observe, given the asset pricing model for the expected returns.

Using this insight, we derive a simple but innovative model for the realized returns that

combines a dividend discount model in the spirit of Campbell and Hentschel (1992) with

the selected conditional asset pricing model to study the model and the risk-return trade-off.

Our approach differs from traditional testing approaches in a sense that our approach relates

realized returns directly to the change in the risk-free rate, in the expected dividends, and

in the risk premiums rather than to the level of or the surprise in the variables.1

We use the new approach to test one of the simplest, yet fundamental pricing equations,

the Merton (1973, 1980) model.2 The model suggests that a representative investor must

receive a certain amount of positive compensation for her investment, commonly referred

1 The framework in Campbell et al. (1987) is obviously closely related to our study. However, they assume
that the variables in the pricing model behaves in autoregressive manner (AR(1) used as an example) which
differs from our setup. Also the empirical model derived in Guo and Whitelaw (2006) to study the Merton
(1973) ICAPM is closely related to our model, although the motivation and the scope are different. The
model derived herein has also some resemblance to the Ang and Liu (2004) valuation framework, and to
Callen and Lyle (2014).

2 The new approach can in principle be used to test any conditional asset pricing model and for any
number of assets. The selected model is merely chosen to demonstrate the differences to the traditional
testing approach.
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to as price of market risk, or lambda, for a unit increase in variance. Because the model

is applicable to any security and hence also to a market portfolio, Merton’s model suggests

a positive relationship between the expected return of a market portfolio and the variance

of the market, all conditional on available information. However, empirical evidence on

this relationship has been mixed, even a long-standing puzzle (sometimes labeled the total

volatility puzzle). Although some studies have found empirical support for the relationship

between return and variance (see, e.g., Ghysels, Santa-Clara and Valkanov, 2005), there is

also a great deal of evidence that the relationship is non-significant, with lambda estimates

being too small and at times even negative, particularly in shorter samples, and sensitive to

methodology and sample period (reviews of the studies can be found, e.g., in Bali, 2008, and

in Gonzales, Nave and Rubio, 2012).

A number of alternative explanations have emerged. The first line of explanation is based

on the idea that the measure of the market portfolio is not adequate. Merton (1987) shows

that if investors cannot hold the true market portfolio, rational investors focus not only

on systematic risk but also on non-systematic risk. This implies that the total volatility

puzzle can be attributed to using a suboptimal proxy for the market portfolio. Investors

are compensated for holding imperfectly diversified portfolios; hence, the standard model

relating market returns to market variance could be missing a source of risk that is driving

the puzzle (see Malkiel and Xu, 2006). A related explanation for the total volatility puzzle

is that the simple one-factor asset pricing model is wrong. In line with this reasoning, the

inconclusive results are due to some missing risk or investment opportunity hedge factors

(e.g., Guo and Whitelaw, 2006; Kim and Nelson, 2014; Feunou et al., 2014). Work along

this line has considered, for example, the unpredictable part of the variance (French, Schwert

and Stambaugh, 1987) or skewness (see Harvey and Siddique, 2000; Lanne and Saikkonen,

2006; Theodossiou and Savva, 2015).

Two closely related explanations are the leverage effect (Black, 1976) and the volatility-

feedback effect (Pindyck, 1984). They both explain why variance and realized return can

move in opposite directions. The former states that a negative shock in the market causes

the overall leverage to increase leading to higher volatility. The latter is based on the idea

that a positive unexpected shock to volatility leads to a higher risk premium which implies

a negative realized return. French et al. (1987) use intuition to motive an empirical model

where the realized equity premium is related both to conditional as well as unexpected vari-

ance. They find support for the volatility-feedback effect over the leverage effect. However,

although their results support the importance of the expected and unexpected variance, they

are not statistically significant simultaneously.

The second line of explanation for the puzzle suggests that the variance measures are
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inadequate and hence should be improved. Suggestions include developments in economet-

ric modeling techniques to model the conditional variance as well as using forward-looking

implied volatility measures. The first wave of improvements came with the introduction

of the (G)ARCH specification by Engle (1982) and Bollerslev (1986) because it allows for

time-variation in the variance process instead of using a constant measure of the variance.

A further development was the GARCH-in-mean specification of Bollerslev et al. (1988),

which allows a comprehensive procedure to test the risk-return relationship. Furthermore,

researchers have argued that the relationship is asymmetric rather than linear. This varia-

tion can easily be addressed by asymmetric GARCH models (see, e.g., Glosten et al., 1993;

Bekaert and Wu, 2000). Ultimately, an enormous number of different specifications in the

GARCH family have been proposed, including multivariate extensions and non-normal dis-

tributions.

A more recent econometric development in estimating variance followed with the mixed

data sampling methods (henceforth MIDAS) introduced by Ghysels et al. (2005). MIDAS

allows one to combine data of different frequencies. This method is especially suitable for

studying the risk-return tradeoff because it allows combining daily data for more accurate

variance estimation with lower-frequency data to model the long-term risk-return relation-

ship, thus alleviating problems with noisy short-term returns. Studies utilizing this method

to evaluate the relationship between volatility and future returns are rather scarce as of

today but include, e.g., Gonzales, Nave, and Rubio (2012) and Ghysels et al. (2005 and

2013).

Alongside the development of new econometric estimation techniques for the conditional

variance, other approaches also have been proposed, the most notable being the use of im-

plied volatility calculated from option prices. A number of stock and derivatives exchanges

have started to calculate these implied volatility measures (cf., e.g., CBOE’s Volatility In-

dex, VIX). Because the implied volatility measure is by construction forward-looking, some

researchers have argued for its use over conventional historical measures (for a review, see,

e.g., Poon and Grander, 2003). As a result, researchers have also used implied volatilities in

studying the relationship between volatility and market premia (see, e.g., Guo and Whitelaw,

2006; Santa-Clara and Yan, 2010).

Although there have been clear improvements in variance estimation, generally only

certain parts of the puzzle have been explainable, not all of it, and neither under all cir-

cumstances nor over short horizons. For example, Hedegaard and Hodrick (2014a) provide

potential explanations for why the risk-return trade-off cannot be observed particularly over

short horizons. They note that market microstructure frictions, non-synchronous portfolio

investment decisions, and individual stock illiquidity can drive the results. Conversely, Hib-
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bert, Daignler and Dupoyet (2008) argue in favor of a behavioral explanation for the negative

return-volatility relationship.

Our new reverse testing approach provides an alternative explanation for the total volatil-

ity puzzle that also helps to explain why many earlier models have not been able to fully

provide one. We argue that many of the earlier efforts to uncover the conditional return-

variance relationship yield susceptible estimates of lambda and have shortcomings that can

be circumvented by the empirical model implied by the new approach. First, the new model

explains why lambda is not significant if one only links realized returns at time t to the

contemporaneous conditional variance as is done by most previous studies. Second, the

model explains why empirical estimates of lambda are by necessity too small unless properly

adjusted. Third, the model helps us to understand why the estimation results are affected

by the time interval used to measure returns. Finally, comparison of the traditional and

the new model reveals why it is possible to find a negative risk-return relationship with the

traditional approach in certain sample periods and return horizons and why this is not the

case with the new approach.

Applying our new approach to study the Merton (1973, 1980) model yields a model

that resembles the volatility-feedback model. However, the models and the results are not

the same. In fact, the tests are closely related only if the unexpected realized variance

during period t+ 1 is positively related to the conditional variance at the end of the period.

However, this is unlikely to be the case. Our model has also some resemblance to Guo

and Whitelaw (2006). They connect a log linearization to Merton’s (1973) ICAPM, and

include both market variance (the risk component), and the covariance with investment

opportunities (the hedge component) in their model, alongside with shocks to the risk and

hedge components. Further, their model contains shocks to the risk-free rate and dividends,

although they are not explicitly estimated in their empirical specification, but left in the

error term. Using implied volatilities over a short sample from 1983(11) to 2001(5), Guo

and Whitelaw find that the price of risk is ”positive, statistically significant, and reasonable

in magnitude”. They also find that the correlation between the risk component and the

hedge component is negative, a result that may explain the weak results using traditional

approaches. In their condensed models, and in models for checking the robustness, the results

are more ambiguous.

Empirically, we compare the new approach to estimate the price of market risk against

the approaches used in the literature. We use both traditional measures of volatility such as

those based on (asymmetric) GARCH models and new models in the spirit of MIDAS. To

avoid issues in two-stage estimation, we also use a readily available, forward-looking variance

measure based on the option implied VIX volatility index. Tests are conducted using US
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stock market returns for 1928 to 2013. The results show that the lambda estimates from

the new model are consistently significant, positive, less sensitive to the sample period, and

higher than the lambdas estimated using the traditional approach.

The remainder of the paper is organized as follows. Section 2 presents the theoretical

background, a new model for the return-variance relationship, and the empirical research

methodology. Econometric issues related to the estimation of the models also are discussed.

Section 3 introduces the data used in this paper. Section 4 shows the empirical results

together with some additional robustness analysis. Section 5 presents the conclusions and

offers suggestions for further research.

2. THEORETICAL BACKGROUND

2.1. Merton model for the return-risk relationship

The capital asset pricing model CAPM postulates that the excess return on any security

can be determined by

E
[
rei,t+1 |Ωt

]
= βi,t+1 (Ωt)E

[
rem,t+1 |Ωt

]
, (1)

where E
[
rei,t+1 |Ωt

]
and E

[
rem,t+1 |Ωt

]
are expected excess returns on security i and the mar-

ket portfolio, conditional on investors’ information set Ωt available at time t. Because the con-

ditional beta, βi,t+1 (Ωt), is defined as Cov (ri,t+1, rm,t+1 |Ωt )V ar (rm,t+1 |Ωt )
−1, where Cov(.)

is the conditional covariance between security i and the market and Var(.) is the conditional

market variance, we can use equation (1) to define the ratio E
[
rem,t+1 |Ωt

]
V ar (rm,t+1|Ωt)

−1

as λm,t+1, a measure commonly labeled as the conditional price of market risk or reward-to-

risk; it measures the compensation the representative investor must receive for a unit increase

in the variance of the market return. Under certain assumptions (e.g., power utility), it can

be shown that this lambda term equals to the aggregate relative risk aversion measure.

Merton (1973, 1980) showed that the same conclusion can be achieved using an in-

tertemporal CAPM. Under certain conditions, equilibrium expected returns are related to

the (co)variance of market returns and a reward-to-risk term defined as −U ′′
ww ·W ·

(
U

′
w

)−1
,

where U is a utility function for a representative investor, W is wealth, and U
′

represents

partial derivatives of the utility function. In both cases, the equilibrium expected excess

returns for any security i can be stated as

E
[
rei,t+1 |Ωt

]
= λm,t+1Cov (ri,t+1, rm,t+1 |Ωt ) , (2)
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where the conditional expected excess return E
[
rei,t+1 |Ωt

]
is linearly related to the time-

varying aggregate price of market risk, measured by the parameter λm,t+1, and the conditional

covariance between the security’s return and that of the market, everything conditional on

information Ωt. Because the model is applicable to any security i, and hence also to the

market portfolio, the model for the excess return on the market portfolio can be written as

E
[
rem,t+1 |Ωt

]
= λm,t+1V ar (rm,t+1 |Ωt ) . (3)

Equation (3) basically shows that investors must be compensated by a higher expected

return if the conditional variance increases. Because subtracting a constant from a random

variable does not change the variance, we can rewrite the variance term in the right hand

side in excess return form: V ar
(
rem,t+1 |Ωt

)
. This equation forms the basis for most of the

empirical analysis conducted so far.

2.2. Traditional testing approaches

The theoretical model (3) has a number of empirical implications. To test the model, one

must provide empirical proxies for expected returns and conditional variance. Typical tests

assume that realized returns can be used as a proxy for the expected returns. This is based

on a notion of rational expectations, which is commonly used as a basis to test unconditional

implications of asset pricing models. Rational expectations imply that although investors’

expectations may be wrong in the short run, they are correct on average in the long run, they

utilize all information, and they are not systematically biased. Given an estimate for the

variance, one typically proceeds to estimate equation (3) under the assumption of constant

price of market risk using the following linear model:

rem,t+1 = µ+ λmσ
2
m,t+1 + εm,t+1, (4)

where rem,t+1 is the realized excess market return from time t to t+1, µ is a constant expected

to be zero if excess returns are used and the asset pricing model is valid, λm is the price of

market risk, and σ2
m,t+1 is the conditional variance for the period from t to t+1, given the

information available at time t. We refer to using this equation as the traditional approach

to estimating lambda.

Empirical research has used a number of alternative approaches to estimate the variance.

The simplest is to use the realized squared returns as an estimate for the variance. The most

commonly used approach, however, is based on the family of (generalized) autoregressive

conditional heteroskedasticity (GARCH). Its popularity is based on the fact that it can be

used to capture the main stylized features in the volatility of financial assets, namely volatility
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clustering, time-variation, asymmetry, and non-normality. The most common approach to

estimate the lambda is the univariate GARCH(1,1)-in-Mean model in which one combines

equation (4) with the assumption that εm,t+1 ∼ iid
(
0, σ2

m,t+1

)
and the following process for

the conditional variance:

σ2
m,t+1 = ω + αε2

m,t + βσ2
m,t, (5)

where the parameters ω, α and β relate to the GARCH(1,1) variance specification. Equation

(5) captures time-variation and clustering, and can easily be adjusted to take into account

further stylized facts of the variance, for example, allowing for asymmetric responses to

return shocks and for alternative distributions.

The traditional approach is, however, problematic because its empirical tests rest on the

joint hypothesis of the expectations model and the asset pricing model itself. We believe

that realized returns are inadequate proxies for the expected returns, particularly for return

measurent intervals typically used in asset pricing tests, and that therefore this approach is

not the best approach for empirical tests of conditional asset pricing models that allow for

time-varying parameters and for expectations. In fact, we argue that some of the empirical

anomalies that have been found with respect to the Merton model are due to the traditional

testing approach.

One of the main empirical anomalies with respect to lambda is that the estimates are

often too small compared with their ex ante expectation as there are theoretical justifications

that lambda should be greater than one but less than five (see e.g. Meyer and Meyer, 2005;

Munk, 2013). The same conclusion can be also drawn by a casual study of equation (3),

which indicates that, for a typical long-term average annual volatility (e.g., 15 percent) and

market risk premium (e.g., five percent), lambda estimates should be greater than one.

There are several explanations for the low estimates of lambda. For example, empirical

tests of the equation (3) are often based on an implicit assumption that an increase in

the variance affects the risk premium, which applies to investment periods across all time

horizons – meaning that the term structure of the cost of capital is flat – and, as a result, one

does not take into account the mean convergence in the variance. A flat term structure for

the cost of capital implies that the required rate of return increases for the next period, and

the one after that, and so on. However, in this situation, using Gordon’s dividend discount

model and reasonable parameter values, it is easy to show that if the volatility increases to

20 percent, it leads to a return shock that should be closer to minus 54.44 percent, ceteris

paribus. Obviously and intuitively, this is not realistic. Investors do not expect higher

volatility to last forever. Thus, they might increase their required rate of return for some

limited number of periods. Over time, one can expect the required rate of return to revert
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to the long-term mean. This implies a term structure for the risk premium (c.f., Feunou et

al., 2014).

The solution suggested in the literature is to analyze the unexpected shock to the vari-

ance separately from the theoretical relationship. This volatility-feedback effect offers an

alternative way to estimate lambda. Following French et al. (1987) adding the unexpected

variance into equation (4) gives us the following model:

rem,t+1 = µ+ λmσ
2
m,t+1 + γmσ

2
u,m,t+1 + εm,t+1, (6)

where σ2
u,m,t+1 = σ2

r,m,t+1−σ2
m,t+1. Realized variance, σ2

r,m,t+1, is calculated as the sum of daily

squared returns within a particular month. In practice, we can estimate lambda easily by

augmenting equation (4) with the realized variance and estimating rem,t+1 = µ+ δmσ
2
m,t+1 +

γmσ
2
r,m,t+1 + εm,t+1. As δm = λm − γm, an estimate for lambda can be calculated as the

sum of δm and γm. We call this equation as the volatility-feedback approach to estimating

lambda. Although, volatility-feedback approach is a step forward, it still suffers from the

use of realized returns as a proxy for expected returns.

2.3. A new model for testing the return-variance relationship

Based on the discussion above, we take a slightly different point of view on estimating

the relationship between market variance and the risk premium. Our starting point basically

turns the tables and asks the question: What kind of realized returns would be observed,

given that the asset pricing model is correct. To investigate this, we create a model in

the spirit of Campbell and Hentschel (1992).3 We analyze realized returns over one period.

The length of the period can be chosen freely, but here we assume it to be one month. At

first, we do not take a stand on the pricing model or how investors set their discount rates.

We do assume that investors price stocks by discounting future cash flows, here taken to

be dividends, or at least that the dividend discount model can be used to match the price

observed in the market. The model is derived in a continuously compounded world, and

thus all rates are continuously compounded returns/dividend growth rates per period.

Our starting point is a dividend-paying security, i.e., an individual stock, a stock portfolio

or the overall stock market portfolio. Later, the pricing model under analysis focuses on the

market portfolio. The security pays a dividend at the end of each period. Hence, the first

dividend is paid at time t + 1. Now the price of the security at time t can be stated as

3 Originally in Campbell and Shiller (1988). Additionally, see the models in Guo and Whitelaw (2006)
and Banerjee, Doran and Peterson (2007).

8



Pt = (Pt,t+1 +Dt,t+1)exp (−rt,t+1) , (7)

where rt,t+1 expresses the continuously compounded required rate of return for the period

from time t to t+1 whereas Pt,t+1 and Dt,t+1 represent the expected price and dividend

occurring at the end of the period, all conditional on information available at time t.

Following Campbell and Hentschel (1992), equation (7) is linearized by taking the log-

arithm of both sides and imposing a first-order Taylor series expansion around the average

logarithmic dividend-price ratio:

ln (Pt) ≈ k1 + ρln (Pt,t+1) + (1− ρ) ln (Dt,t+1)− rt,t+1, (8)

where k1 ≡ −ln (ρ) − (1− ρ) ln (1/ρ− 1) and ρ ≡ 1/(1 + exp(d− p)).4 Lower-case letters

refer to the logarithm of the variable throughout the paper. Because dividends cannot be

negative, ρ is positive and less than one by definition. Furthermore, if the dividend-price

ratio remains constant over time, rho is equal to the stock price divided by the sum of the

stock price and the dividend. For any reasonable values of rho (> 0.9) it is easy to see that

k1 is also positive. Campbell, Lo, and MacKinlay (1997) suggest that ρ should be 0.997 for

monthly data.

Using repeated replacements and imposing the terminal condition as in Campbell and

Hentschel (1992), we can write the logarithm of the price as a function of the future dividends

and discount rates

ln (Pt) ≈
k1

1− ρ
+ (1− ρ)

∞∑
i=1

ρi−1dt,t+i−
∞∑
i=1

ρi−1rt,t+i, (9)

where dt,t+i = ln (Dt,t+i) is the logarithm of the expected dividend at time t+ i (i > 0) and

rt,t+i is the continuously compounded required rate of return for period t+i, both conditional

on information available at time t. Deriving a similar expression for the log price at t+1, we

get

ln (Pt+1) ≈ k1

1− ρ
+ (1− ρ)

∞∑
i=1

ρi−1dt+1,t+1+i−
∞∑
i=1

ρi−1rt+1,t+1+i. (10)

Next, we utilize the fact that the continuously compounded realized return at time t+1

can be written using a first-order Taylor log-linearization as

rt+1 ≈ k1 + ρln(Pt+1)− ln(Pt) + (1− ρ)ln(Dt+1), (11)

4 See Internet Appendix ?? for more detailed derivation.
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where Dt,t+1 is the realized dividend at time t+1. Inserting log prices (equations (9) and

(10)) into equation (11), we get the following expression for realized returns:

rt+1 ≈ k1 + ρ

[
k1

1− ρ
+ (1− ρ)

∞∑
i=1

ρi−1dt+1,t+1+i −
∞∑
i=1

ρi−1rt+1,t+1+i

]

−

[
k1

1− ρ
+ (1− ρ)

∞∑
i=1

ρi−1dt,t+i −
∞∑
i=1

ρi−1rt,t+i

]
+ (1− ρ) ln (Dt+1) . (12)

Rearranging and collecting the constants together, the equation can be written as

rt+1 ≈ k2 + (1− ρ)

[
∞∑
i=1

ρi
(
dt+1,t+1+i − ρ−1dt,t+i

)]
+ρ−1

∞∑
i=1

ρi
(
rt,t+i − ρrt+1,t+1+i

)
, (13)

where k2 = (1− ρ) dt+1. From this point forward our setup differs slightly from Campbell

and Hentschel (1992). From now on, we focus on the market portfolio. Using equation (3)

as our candidate asset pricing model for the conditional expected (required) returns for the

market portfolio and assuming here for convenience that the price of market risk is constant,

we can rewrite the last term of equation (13) as follows:

ρ−1

∞∑
i=1

ρi (rt,t+i − ρrt+1,t+1+i)

= ρ−1

∞∑
i=1

ρi
(
rft,t+i − ρrft+1,t+1+i + λm

(
σ2
t,t+i − ρσ2

t+1,t+1+i

))
= ρ−1

∞∑
i=1

ρi (rft,t+i − ρrft+1,t+1+i) + ρ−1λm

∞∑
i=1

ρi
(
σ2
t,t+i − ρσ2

t+1,t+1+i

)
. (14)

As a result, our model differs from Campbell and Hentschel’s specification because our

model relates realized returns directly to the change in the conditional variance over the

period rather than to the (contemporaneous) level of the conditional variance. We also focus

on market risk, whereas Campbell and Hentschel focus on innovations in the dividends.

Using the assumption that the conditional variance is a mean-reverting process (cf., e.g.,

Engle and Patton, 2001) and that one-step-ahead forecasts can be assessed, we can calculate

conditional multistep forecasts i periods ahead using the conditional variance for the next

period. Here, we further assume that the conditional variance for any future period i ≥ 1

can be expressed as a function of the next period’s forecast as follows:
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σ2
t,t+i = φi−1σ

2

t,t+1 + σ2
(
1− φi−1

)
, (15)

where |φ|<1 is a persistence parameter reflecting the speed of convergence of the conditional

variance toward the long-term unconditional variance σ2. As we expect φ to be positive,

this model states that if the current variance is below (above) the long-term average, the

forecast for the variance also stays below (above) the long-term average, but over time the

variance will converge towards the mean. The model also implies that an increase (decrease)

in the next period’s conditional variance is also reflected in the periods that follow but with

decreasing intensity, and in the long term, the variance converges to its long-run mean.

We can write all future conditional variances in terms of next period’s conditional variance

and the unconditional variance. The last term in the parentheses of equation (14) can be

rewritten using the fact that equation (15) implies that

σ2
t,t+i − σ2

t+1,t+1+i = φi−1
(
σ2
t,t+1 − σ2

t+1,t+2

)
+ σ2 (1− ρ)

(
1− φi−1

)
. (16)

Inserting (16) into (14), we can rewrite equation (13) for the realized returns as

rm,t+1 ≈ k2 + (1− ρ)

[
∞∑
i=1

ρi(dt+1,t+1+i − ρ−1dt,t+i)

]

+ ρ−1

∞∑
i=1

ρi (rft,t+i − ρrft+1,t+1+i)

+ λmρ
−1

∞∑
i=1

ρi
[
φi−1

(
σ2
t,t+1 − ρσ2

t+1,t+2

)
+ σ2 (1− ρ)

(
1− φi−1

)]
.

(17)

After some modifications, the equation can be written in the form

rm,t+1 ≈ k2 + (1− ρ)

[
∞∑
i=1

ρi(dt+1,t+1+i − ρ−1dt,t+i)

]

+ ρ−1

∞∑
i=1

ρi (rft,t+i − ρrft+1,t+1+i)

+ λm[
(
σ2
t,t+1 − σ2

t+1,t+2

)
· ϕ∆σ + σ2·ϕσ], (18)

where
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ϕ∆σ = ρ−1φ−1

∞∑
i=1

ρiφi =
1

1− ρφ
, (19)

and

ϕσ = ρ−1 (1− ρ)

[
∞∑
i=1

ρi − φ−1

∞∑
i=1

ρiφi

]
=

(
1− 1− ρ

1− ρφ

)
. (20)

Henceforth ϕ∆σ and ϕσ are collectively called sigma multipliers. In practice, if the vari-

ance persistence parameter φ equals, say, 0.9 and ρ equals 0.997 for monthly data, ϕ∆σ

equals 1/(1 − 0.997 · 0.9) = 9.74, and ϕσ equals (1− ϕ∆σ · (1− ρ)) = 0.97. The parameter

ϕ∆σ indicates how much changes in the conditional variance over one period are magnified

due to the persistence of variance.

Now, for simplicity and insight, we can assume that the interest rate term structure is

flat, i.e., the risk-free rate at any given time is the same for all maturities. For example, at

time t, the risk-free rate rft,t+i is the same for all values of i.5 Similarly, we also assume that

dividends grow at a constant growth rate (for a certain period)—or that if they do not, one

can derive an implicit growth rate that yields the prevailing price for the stock. Thus, future

dividends can be written as a function of time, the last observed dividend and their growth

rate. Assuming further that the growth rate is equal over time, we can write the dividend

term in equation (18) as the sum of a constant and the following equation:

(1− ρ)
∞∑
i=1

ρi (dt+1,t+1+i − dt,t+i+1) = (1− ρ)
∞∑
i=1

ρi (dt+1 + (gt+1 · i)− dt,t+1 − (gt · i)) ,

(21)

where gt and gt+1 are the expected future dividend growth rates, conditional on information

known at times t and t + 1.6 Assuming that the conditional dividend growth rates start to

converge in the long run (or alternatively that the dividends converge in the long run), we

can simplify equation (21). This assumption is consistent with the intuition, because new

information at time t+1 may affect investors’ expectations regarding the dividends in the

short run, but this effect is unlikely over the long term. Assuming further that dividend dt+1

paid at time t+1 is equal to its expected value dt,t+1, and inserting the results into equation

(18), we get the following result:

5 A light variation would be to assume that the interest rate changes take place by parallel shifts in the
term structure.

6 Here we utilize
∑∞

i=1 ρ
i(dt+1,t+1+i − ρ−1dt,t+i) = −dt,t+1 +

∑∞
i=1 ρ

i (dt+1,t+1+i − dt,t+i+1).
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rm,t+1 ≈ k3 + (gt+1 − gt) · ϕd + (rft − rft+1) · ϕrf + λm

(
(σ2

t,t+1 − σ
2
t+1,t+2) · ϕ∆σ + σ2 · ϕσ

)
,

(22)

where ϕd and ϕrf can be interpreted as parameters that measure the effect of the change

in the dividend growth rate and risk-free rate, respectively. Both of them are by definition

positive. The constant k3 is defined as

k3 = (1− ρ) (dt+1 − dt,t+1) +rft. (23)

The values of parameter k3 can be either positive or negative because the first term

(dividend forecast error) is either positive or negative and the last term is positive.

Analyzing equation (22) shows that realized returns are higher if investors’ conditional

expectations of the long-term dividend growth rate increase from period t to t+1, ceteris

paribus. The same is true if the interest rates decrease. Assuming that the asset pricing

model is correct, a decrease in conditional volatility should also lead to higher realized re-

turns. All implications of the model are in line with intuition. It is also quite straightforward

to prove that the realized return given by equation (22) equals the expected return given

by equation (3) if investors’ conditional expectations prove to be right (proof can be found

from Internat Appendix ??).

We can study whether our derivation of the lambda can be used to explain some of

the anomalies observed in the market. There are two important sub-questions. The first

question is related to whether the lambdas calculated using the new approach differ from

the lambdas based on the traditional approach and, if they do, how. The second question is

related to whether time aggregation has an effect on the result. To answer the first question,

we solve for the price of market risk at time t+1 from equation (22):

λm ≈
rm,t+1 − k3 − (gt+1 − gt) · ϕd − (rft − rft+1) · ϕrf(

σ2
t,t+1 − ρσ2

t+1,t+2

)
· ϕ∆σ + σ2 · ϕσ

. (24)

Most of the earlier studies using, for example, the GARCH-M framework, estimate a

rational expectations lambda (labeled henceforth as λTm or traditional lambda) as a ratio of

mean realized return to realized variance for the same period, i.e., λTm = rm/σ
2. It is easy

to see why the estimate for λTm can be negative if the mean realized market return has been

negative during the sample period. Conversely, taking expectations of equation (24), we can

see that a negative average realized return need not lead to a negative lambda, because the

denominator can also be negative during the same period. Obviously, if the sample period

is sufficiently long, the lambda estimates in both approaches converge as the denominator
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converges to the unconditional variance.

To answer the second question, we can see that λTm is in principle unaffected by the time

aggregation if the variance time-aggregate linearly as returns. However, this is not the case

if the returns show, e.g., autocorrelation. If the variance decreases slower than linearly for

less-aggregated returns, traditional lambdas estimated using returns measured over short

periods can be biased downwards. This does not necessarily happen for lambdas estimated

with the approach presented here if the variance persistence parameter varies for different

return aggregation periods.

Finally, we can also study the sensitivity of our lambda to measurement errors, for exam-

ple, due to a short sample. To this end, we assume that the expected divided growth rates

and risk-free rates are two and three percent per annum, respectively. The lambda is fur-

ther assumed to be two, rho 0.997, and the variance persistence parameter 0.9. Conditional

volatility is assumed to be 20 per cent per annum. All parameter values are assumed to

remain unchanged at times t and t+1. Furthermore, expected and realized dividend at time

t+1 are assumed to be 1/12 dollar. We also assume that the variance exhibits mean-reversion

as in equation (15) and that asset-pricing model (3) applies. Using monthly parameter values,

we can calculate time series for the expected dividends, conditional variances and required

rates of return for each period from t+1 onward, conditional on information available at time

t. Then, we can do the same from period t+2 onward, conditional on information available

at time t+1. Discounting dividends using the required rates, we can derive prices at time

t and t+1 for the security as a sum of the discounted dividends. Taking into account the

dividend paid at t+1, we calculate the realized return for the security. Using 2,000 months

in the analysis, the realized and expected returns are equal, 0.917 per cent.

Now, using equation (24), we can solve for lambda. Obviously, using the parameters

above, lambda is two with high accuracy. Allowing for errors in the underlying parame-

ters provides us an opportunity to analyze the sensitivity of the lambda to the underlying

parameters. Using reasonable values for the parameters, lambda is almost unchanged with

respect to changes in the values for dividend growth rate, risk-free rate, level of volatility,

and variance persistence (the difference is less than 0.001% except for low volatilities; e.g., a

volatility of ten per cent leads to a bias +1.016% in lambda). The analysis also reveals that

our lambda is most sensitive to the relationship between conditional volatilities. If the con-

ditional volatility decreases (increases), for example, 2.5% from time t to t+1 (corresponding

to a sample mean realized monthly return of –3.47% and +5.39%, respectively), our lambda

is biased downwards by 1.268% (upwards by 3.815%). However, it is very unlikely that

variance would trend except in very short samples.
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2.4. Empirical model and estimation

The empirical objective of this paper is to estimate the price of market risk, or lambda,

to find out whether there is a positive, statistically significant relationship between risk and

return, and to assess whether the size of the lambda is within a theoretically justifiable region.

In practice, we also want to compare the estimate of lambda from the traditional approach

(λTm) with our estimate of λm. Therefore, we first estimate the GARCH(1,1)-in-Mean model

for the market as given by equations (4) and (5) to get the traditional lambda.

To get our estimate for the lambda, we write equation (22) in excess-return form as

rem,t+1 = b1+b2[(σ2
t,t+1−σ2

t+1,t+2)·ϕ∆σ+σ2 ·ϕσ]+b3 (gt+1 − gt)+b4 (rft − rft+1)+um,t+1, (25)

where b1 to b4 are the coefficients to be estimated. All coefficients are expected to be positive.

b2 is our estimate for the lambda. The term gt is the expected continuously compounded

growth rate for the dividends over one period starting from time t onwards, conditional on

information available at time t. The risk-free rate at time t is given by rft. The term σ2
t,t+1 is

the variance of the continuously compounded market return from time t to t+1, conditioned

on information available at time t. Parameters are defined similarly for time t+1. Other

parameters are as defined earlier.

Since our main interest is the estimate for the price of market risk, our baseline model is

the following shortened version of the model under the assumption that changes in both the

interest rate level and the dividend growth rates are of lesser importance:

rem,t+1 = b1 + b2[(σ2
t,t+1 − σ2

t+1,t+2) · ϕ∆σ + σ2 · ϕσ] + um,t+1, (26)

where b1 is also expected to account for the mean effect from the components excluded from

the model and b2 is again our estimate for the lambda. Note that in our specifications (25)

and (26), the constant b1 cannot be given the same Jensen’s alpha interpretation as the

constant in standard tests of asset pricing models.

To estimate the model, we need a proxy for the conditional variance. We use three

different proxies, the first one being the conditional variance from a GARCH model. We

utilize a two-step estimation strategy. First, we estimate the GARCH model including only

a constant in the mean equation. In the second step, we estimate equation (25) or (26) using

the conditional variance estimates from the first step. Note that we utilize contemporary

conditional variance at time t+1 for the period ending at time t+2 in the mean equation,

i.e., σ2
t+1,t+2. This value corresponds to σ2

m,t+2 in the GARCH-M specification (equation (5)).
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To provide an estimate for lambda, we must estimate ϕ∆σ, ϕσ, and the unconditional

variance, σ2. To estimate ϕ∆σ and ϕσ, we use definitions (19) and (20). This requires an

estimate for the speed of conditional variance returning to its long-term mean, i.e., the φ

parameter and the dividend-to-price-related ρ parameter. The latter can be easily calculated

from the data, but the former utilizes the results from the model for the conditional variance.

Assuming that the conditional variance follows a GARCH(1,1) process, we can write the i -

step ahead forecasts for the conditional variances as a combination of the next period’s

conditional variance and a long-term (unconditional) level, i.e.,

σ2
t,t+1+i = (α + β)iσ2

t,t+1 + ω
1− (α + β)i

1− α− β
, (27)

where α, β, and ω are the GARCH parameters. Now, assuming that the GARCH parameters

remain constant, our variance convergence speed parameter φ is the sum of α and β. The

unconditional variance can be estimated as ω/(1− α− β).

Our second proxy for the variance is obtained by mixing data of different frequencies

using MIDAS techniques. It is a compromise between the need for lower-frequency data for

modeling the risk-return relationship and higher-frequency data for modeling the variance.

It is well known that the accuracy of the variance estimates improves with higher data

frequency, whereas it is not the case for the mean. As before, we first use the traditional

approach to estimate lambda after which the specification (26) is estimated. Following

Ghysels et al. (2005 and 2013), we write equation (4) for lower frequency (here monthly)

excess market return rm,t+1 as follows:

rem,t+1 = α + λTmh
MIDAS
t+1 + em,t+1, em,t+1 ∼ Distr

(
0, hMIDAS

t+1

)
, (28)

where we have defined σ2
m,t+1 = hMIDAS

t+1 to be the conditional variance for the period from

time t to t+1, estimated using higher frequency data (here daily) up to time t with MI-

DAS. Distr refers to some probability distribution, often the normal distribution, but not

necessarily. The variance is modeled using the MIDAS on high frequency returns rm,t:

hMIDAS
t+1 = 22

D−1∑
d=0

wd
(
θD
)
r2
m,daily,t−d, (29)

where wd(θ
D) is a polynomial weighting structure for daily observations. The equation

belongs to a group of distributed lag (DL) models. The number 22 is a scaling constant that

refers to the average number of trading days in a month; it converts daily variance into a

monthly one. D is chosen such that the specification captures sufficient lags but is feasible

to estimate. In practice, the parameters of the weight function restrict the effective number
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of lags to less than 200 (Ghysels, 2014). Here we select it to be 30 to attain convergence in

all estimations using the same weighting approach.

A number of polynomial weighting structures can be used (for more information, see

Ghysels et al., 2007). Here we use the normalized beta probability density function with a

zero last lag. The weights w given on past daily observations are calculated as follows:

wi (D, θ1, θ2) =
xθ1i (1− xi)θ2−1∑D
i=1 x

θ1
i (1− xi)θ2−1

, (30)

where xi = (i − 1)/(D − 1). For a reasonably large D, the sum of the weights is very

close to one. Specification (30) ensures that all weights are positive, guaranteeing a positive

variance estimate. The shape parameters θ1 and θ2 are estimated jointly with the rest of

the parameters and allow for a rich spectrum of weighting schemes. The variance estimator

of French et al. (1987) has some similarities to specification (30). However, it gives equal

weights to the observations. In specification (30), the estimated values of θ1 and θ2 implicitly

allocate less weight to older observations than to newer ones.

To estimate equation (25) or (26) in the MIDAS framework, we follow the two-step

procedure as before with the GARCH approach, i.e., we first derive our estimate for the

conditional variance and then plug it into equation (25) or (26) for the second step. To

calculate the ϕ∆σ and ϕσ parameters, we assume that the variance follows an AR(1) process

given by

hm,t+1 = φ0 + φ1hm,t + εm,t+1. (31)

To calculate forecasts for the conditional variance, the speed of convergence to the un-

conditional variance is simply φ1, and the unconditional variance is φ0/(1− φ1).

Our third proxy for the conditional variance is based on implied volatilities calculated

from options prices observed in the market. As earlier, we start by estimating the traditional

lambda based on realized returns as proxies for the expected returns. Using the notation

in equation (5), we define σ2
m,t+1 = IV 2

m,t as the squared implied volatility observed at time

t for the period from t to t+1. Now, we can estimate the traditional lambda using the

following model:

rem,t+1 = αm + λTmIV
2
m,t + εm,t+1. (32)

A slight variation of the model (32) is used in Dennis, Mayhew, and Stivers (2006),

who use the innovation in the implied volatility measure to study its effect on the returns.

They find a substantially negative relationship between the innovation in the systematic
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market volatility and stock returns. They also find that the commonly observed asymmetry

in the return-volatility relationship is mostly driven by market-wide effects rather than by

security-specific ones. Another variation is in Banerjee, Doran, and Peterson (2007), who

develop a model in which the realized returns are related to the level and the innovations in

the variance. They find a statistically significant and positive lambda using S&P500 index

returns and the VIX from 1987 to 2005. The results are more significant if two-month returns

are used, which is in line with the earlier discussion on the role of time aggregation.

To estimate our model (26) using implied volatilities, we define σ2
t+1,t+2 = IV 2

m,t+1 as the

squared implied volatility observed at time t+1 for the period from t+1 to t+2. Before we

can estimate the equation, we need to calculate the required sigma multipliers, ϕ∆σ and ϕσ.

To do this, we first run an AR(1) model for the implied variance to estimate the variance

persistence parameter and unconditional variance as with the MIDAS estimation and then

proceed similarly.

3. DATA

3.1. Variables

We estimate our models using two sets of data. For the GARCH estimation, we utilize

monthly returns for the US stock market and a risk-free rate of return from January 1928

to December 2013, i.e., 1,032 months of data. For the MIDAS estimation as well as for the

volatility-feedback approach estimation, we complement the monthly data with daily return

observations for the same period. Consequently, the beginning of the sample period matches

closely to that of Ghysels et al. (2005), but the sample period extends several years beyond,

including the financial crisis that peaked in autumn 2008 and winter 2009.

We use the month-end CRSP value-weighted total return as a proxy for the market

return. For the MIDAS estimation, we complement the dataset with daily returns of the

CRSP index. When estimating the volatility-feedback model, we use the sum of daily returns

squared as a proxy for the realized variance. The return includes dividends and is adjusted

for splits and issues. The risk-free rate for month t+1 is based on the one-month holding

period return on US Treasury bills closest to one month at the end of month t. These data

are also from the CRSP database. The excess return is obtained as the difference between

the market return and the risk-free rate of return. Continuously compounded returns in

decimal format are used throughout this study unless otherwise stated.

For the full model, we also need a measure for the change in the risk-free interest rate

level. Here, we proxy the risk-free interest rate level with the long-term US government bond
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yield taken from the Ibbotson SBBI (2014). In addition, we need a measure for the change

in the expected dividend growth rates. To create a proxy for this change, we first calculate

the dividends paid in monetary terms in the past twelve months. The dividend for a given

twelve-month period is obtained by multiplying the CRSP price index a year ago with the

difference between the total return and price index returns in the twelve-month period. In

the second step, we calculate the logarithmic annual change in the dividends and use it as a

proxy for the future growth rate of dividends. Thus, we use the past annual dividend growth

rate to forecast future dividend behavior.

As stated earlier, we also test the model using implied volatilities. In practice, we utilize

a readily available volatility index from an options exchange. Our primary measure is the

Volatility Index calculated by the Chicago Board Options Exchange for the US market. The

original CBOE Volatility Index (”VXO”) is available on a daily basis from 1986 to present

day. However, CBOE updated the original index and created a theoretically more suitable

index labeled ”VIX”7 that is available from the beginning of 1990 onwards. The VIX is

based on the 30-day implied volatility per annum calculated from the options traded for the

stocks included in the S&P500. VIX values are based on averaging observations from put

and call options over a wide range of strike prices, and the index measures the volatility per

annum (CBOE, 2009). In our empirical analysis, we utilize the VIX (squared and divided

by twelve). Our sample period starts in January 1990 and ends in December 2013, providing

us with 288 monthly observations. The VIX is accessed on the CBOE’s website.

3.2. Descriptive analysis

Table 1 provides descriptive statistics for the monthly and daily variables in this study.

Panel A uses data for the entire sample period (January 1928–December 2013). Panel B

provides similar descriptive statistics for the period overlapping with the VIX data (January

1990–December 2013). In addition to the series in Panel A, Panel B includes VIX data and

their values squared.

The mean monthly risk premium over the entire sample period is 0.477 per cent per

month (or 5.72% per annum), with a volatility of 5.44 per cent per month (18.84% p.a.).

The descriptive statistics for the subsample in Panel B show that both the average return

and particularly the volatility have been lower in recent decades. The volatility is on average

4.46 per month (15.45% p.a.). It is clearly lower than the market expectation given by the

VIX because it gives an average volatility forecast of 20.20% p.a. The average dividend

growth rate is 4.49% for the full sample and 4.92% for the subsample. Government bond

7 The VXO was based on S&P100 stocks and had some shortcomings in its calculation methodology (cf.
Carr and Wu, 2006).
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yields have been, on average, 5.09% and 5.43% for the full and subsample, respectively.

Almost all of the series are non-normally distributed according to the Jarque-Bera (1987)

test for normality. The monthly risk premia are negatively skewed and show much less kurto-

sis in the post-1990 subsample than over the entire sample period. As expected, the monthly

risk premium shows a fairly low, albeit significant, positive first-order autocorrelation. The

dividend growth rate shows high autocorrelation (0.895) as expected due to overlapping div-

idend observations used to calculate the growth rate, as do the government bond yield series

(0.980).

4. EMPIRICAL RESULTS

4.1. Baseline model with GARCH estimates

We begin our analysis by studying the price of risk (lambda) using the traditional ap-

proach, i.e., the generalized autoregressive conditional heteroskedasticity-in-mean approach

(GARCH-M). We compare the results from the traditional approach with those obtained

using the new approach developed in this paper. The former approach is based on the un-

derlying assumption that realized returns are good proxies for expected returns, whereas the

latter does not require this. We utilize the quasi-maximum likelihood approach (QML) in

the estimation.8 Table 2 presents the results. Estimations are conducted using monthly data

from January 1928 to December 2013.

First, we estimate the pricing model (3) as it has been typically estimated in the literature,

i.e., equations (4) and (5). We begin with the standard GARCH(1,1)-M specification. Panel

A provides the results. The price of market risk is estimated to be 0.686, which is positive

as expected by the theory; however, it is not significantly different from zero, with a t-value

of 0.839. It is also lower than one would expect, but in line with earlier studies (cf., e.g., a

value of 1.060 with a t-value of 1.292 in Ghysels et al., 2005). In addition, the explanatory

power of the traditional model is low, with an adjusted R-squared of -0.3%.

There could be several reasons for the empirical estimation not confirming a significant

relationship between expected returns and variance. One potential explanation could be that

the conditional return is not normally distributed. Therefore, we run the model assuming

a conditional t distribution instead of the normal distribution. The results are reported in

Panel A. However, this does not improve the model. The explanatory power of the model

drops slightly, and the estimate for the price of risk is even lower than before: 0.617 with

a t-value of 0.715. Residual diagnostics (not reported) show that both models are able to

8 More detailed information about the estimations in this paper is available upon request.
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capture the heteroskedasticity dynamics properly. However, the normality assumption is

rejected. Overall, there are no major differences between the diagnostics of the models.

Another potential explanation for the insignificant lambda estimate could be asymmetry

in the variance process (cf., e.g., Bekaert and Wu, 2000; Cappiello et al., 2006), indicating

that the variance response of negative shocks differs from that of positive shocks. To test

this, we utilize the GJR-GARCH model by Glosten, Jaganathan, and Runkle (1993) and

replace equation (5) with the following GJR-GARCH(1,1)-M model:

σ2
m,t+1 = ω + αε2

m,t + γε2
m,tIm,t + βσ2

m,t, (33)

where Im,t = 1 if εm,t < 0, and zero otherwise. In practice, the gamma parameter, γ, captures

the effect of negative shocks. We estimate the model using conditional normality and the

t-distribution. The results are reported in Panel A.

The results do not provide strong support for either of the distributions, although the

degrees of freedom for the t-distribution is estimated to be 7.012 with a t-value of 6.314,

meaning that the tails of the distribution are fatter than is commensurate with the normal

distribution. The conditional volatility is asymmetric, with a positive response to negative

shocks (the gamma parameter is statistically significant at the 5 per cent level). However, the

explanatory power of the model does not materially increase, and the price of risk parameter

remains non-significant. In fact, the lambdas are even lower than before. As a result, it

is fair to conclude that the traditional approach, when estimated with the commonly used

GARCH-in-mean approach, does not seem able to find a statistically significant (positive)

relationship between variance and return.

Next, we use the volatility-feedback approach to estimate lambda. The results are re-

ported in Panel B of Table 2. The estimations are done similar to Panel A, but realized

variance is added as an explanatory variable into the mean equation. Reported lambda is

the sum of the delta and gamma parameters. Their t-values are calculated using Wald-test

on the hypothesis that their sum is zero. The results are similar to those found in French et

al. (1987). Gammas – measuring the impact of realized variance on realized returns – are

found negative and highly significant. The explanatory power of the model is also clearly

higher than before than before. However, the evidence goes straight against the Merton

model. None of the lambdas are significant which clearly suggest that, despite the signifi-

cant volatility-feedback effect, taking the effect into account cannot help us to find support

for the positive relationship between conditional risk premium and variance.

Finally, we turn to the new estimation model introduced in this paper. We estimate our

baseline model utilizing the same GARCH processes as before and again with conditional

normality and t-distribution assumed. The estimation is conducted in two stages. First, we
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estimate the parameters for the GARCH (or GJR-GARCH) process with only a constant

in the mean equation. We use the results to calculate the variance persistence parameter

φ, as indicated by equation (31), and the sigma-multipliers as indicated by equations (19)

and (20). Note that when we are utilizing the GJR-GARCH-specification, the variance

persistence parameter is the sum of α, β, and half the asymmetry parameter, γ. The

unconditional variance can be stated as ω/(1− α − β − γ/2). In the second step, we run a

linear regression model according to equation (26).9 The results are reported in Panel C of

Table 2.

Utilizing a two-step estimation strategy to estimate our baseline model (26) or the full

model (25) raises the question of whether there might be biases in our second-step estimator

for the lambda because the independent variable is subject to an errors-in-the-variables

problem. Following earlier studies, we argue that the potential measurement error in the

variance decreases due to the long sample period (cf. Shanken, 1992) and that, as a result,

the lambda estimates are not systematically distorted. For example, Hedegaard and Hodrick

(2014b) use a four-step procedure in a multivariate setup. First, they estimate univariate

GARCH(1,1) models for all assets. Second, the standardized residuals from step one are used

to get correlations from a DCC model. Third, a conditional covariance matrix is constructed

based on the variances from step one and the correlation matrix from step two. Finally, the

risk-return relationship is estimated in step four. The authors conduct a simulation study

to conclude that the parameters of interest are well-behaved, and that their standard errors

are correctly estimated.

In line with the results in Panels A and B, our results show that the variance parameters

are significant in almost all cases. However, in contrast to the results shown in Panels A and

B, the lambda estimates are significant except for the case of standard GARCH under the

assumption of normality. In this case, the estimate is 0.236 (t-value 1.395). Interestingly, for

the t distribution, the estimate increases to 0.536 (t-value 1.842). Utilizing the GJR-GARCH

approach, the lambda estimate increases even further, first to 0.900 (under normality) and

then to 1.828 (under the t distribution). The results are highly significant in both cases.

The explanatory power of the model is also considerably higher than it is for the traditional

or for the volatility-feedback models.

The results give strong support for the positive relationship between conditional equity

premium and variance. One obvious question could be to test whether the variance shock

9 Because the return series shows signs of autocorrelation, we also test for autocorrelation in the resid-
uals of our model. As there are indications of first-order autocorrelation, we use the Newey-West (1987)
adjustment for autocorrelation and heteroskedasticity when calculating the standard errors for the param-
eters using the OLS. Thus, all reported t-values for equations (25) and (26) and for the AR(1) process are
calculated with the adjustment.
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offers explanative power over the change in the conditional variance as in equation (26). To

test this question, we first noted calculated the variance shock as the difference between

realized variance and the conditional variance. Then we added this variable into equation

(26) and re-estimated the model with GJR-variance process and t-distribution. The results

show that the variance shock is not significant. Volatility-feedback parameter value is -0.446

(t-value -0.608) and lambda is almost unchanged (1.765 with t-value of 8.361). We feel

confident to conclude that the volatility-feedback effect does not offer a sufficient explanation

for the observed returns, and at the same time its application does not provide support for

the Merton model.

4.2. Baseline model with MIDAS estimates

Next, we turn to MIDAS estimation. First, we test the asset pricing model using the

traditional approach. The estimation is based on equations (28), (29), and (30). As we have

multiplied the squared daily returns with 22 to arrive at a per-month form, we can interpret

the coefficient for the high-frequency terms in equation (28) as the price of market risk. We

test the model using two samples, first from January 1928 and then from January 1990 to

December 2013. The MIDAS estimations are also conducted using the maximum likelihood

approach.10 The results are reported in Panels A and B of Table 3, respectively.

The results show that the traditional lambda estimate is negative using both the full

and shorter sub-sample. However, the value for the full sample, -0.174, is not statistically

significant. Somewhat surprisingly, the post-1990 sample yields a value of -1.189, which

differs significantly from zero at the five percent level. However, in contrast to the full

sample, in the case of the post-1990 sample, the MIDAS parameters that are related to

the high-frequency distribution are not statistically significant. This implies that our model

for high-frequency data (daily returns) may not be the best one. Hence, we also estimate

the model using the normalized exponential Almon lag polynomial. Again, the lambda

parameter is negative (-1.054 with t-value -3.012) and statistically significant. This time,

however, the high-frequency lag structure fits the model better, and both MIDAS parameters

are statistically highly significant.

We also want to see whether we are able to replicate the results in Ghysels et al. (2013;

contains corrected results for the 2005 article). Using arithmetic returns (in contrast to our

continuously compounded returns), a sample from 1928 to 2000, and a similar estimation

setup (normalized exponential Almon lag polynomial, lag equal to 260 days), we estimate

the lambda to be 0.3829 (t-value 0.8496), which is close to their value of 0.1472 (t-value

10 In practice, the estimation is based on version 1.1 of the Matlab routines provided by Professor Eric
Ghysels on his website.
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0.1249). Similar to their result, the value is not significant. The results differ to some degree

because our data are not exactly the same. For example, they used the three-month risk-free

rate, their daily market return prior to July 1962 is from professor Schwert as opposed to

our CRSP-originated market returns, and our estimation setup is somewhat different.

It is evident from the results that the traditional approach is not able to provide a

significant lambda estimate. Thus, we continue with the new approach and test our baseline

model. However, to test the model, we must obtain conditional variances. To this end,

we proceed with a two-step approach. First, we estimate the MIDAS model as before, but

with one main difference: we use squared monthly returns as the dependent, lower-frequency

variable. In practice, we estimate the following model:

r2
m,t+1 = α + βhMIDAS

t+1 + εm,t+1, εm,t+1 ∼ Distr
(
0, hMIDAS

t+1

)
, (34)

where hMIDAS
t+1 is the contemporary variance estimate based on the daily squared returns.

As a result, the beta parameter can be interpreted as a high-frequency response parameter

linking daily and monthly squared returns. It should be close to one if daily variances can

be used as a proxy for monthly variance. In the second stage, we use the variance estimates

from the first stage (fitted monthly variances from the model) to test equation (26) using the

OLS. For the regression, we estimate first the variance persistence parameter using equation

(31) and use it to calculate the sigma multipliers.

The results are reported in Table 3. The Newey-West (1987) adjustment is applied for

the t-values. The adjusted R-squared is for the baseline equation (26). Interestingly, the

conditional variance does not show the same level of persistence (the AR(1) parameter is

estimated to be 0.503 and 0.641 for the full and subsample, respectively) when compared

with the estimates for the autoregressive β parameter in the GARCH model (cf. Table

2). This could be due to the MIDAS approach, which arguably could track changes in the

variance more quickly due to the use of higher-frequency data.

The results show that for both samples, we again find the lambda estimate to be sta-

tistically significant at the one per cent level. This provides further support for the model

introduced in this paper.11 The lambda for the full sample (1.695 with t-value 4.819) is in

line with earlier estimates from the GJR-GARCH model, although the explanatory power

of the model is lower (10.3 vs 36.7 percent). Conversely, the explanatory power is higher

than the model based on GARCH variance estimates alone. Interestingly, the price of risk

seems to be higher for the post-1990 sub-period (2.826 with t-value 6.995) than for the whole

sample.

11We also estimated lambda using the volatility-feedback approach. The results are basically similar to
Table 2.

24



4.3. Baseline model with the VIX

Our third alternative proxy for the conditional variance is the implied variance based on

option prices observed in the market. In practice, we utilize squared values for the VIX data,

but convert them into a monthly measure by dividing the values by twelve. The estimation

is conducted using monthly data from January 1990 to December 2013. We first estimate

the model using the traditional approach. The estimation is conducted using equation (32).

Results are reported in Table 4. The results show that the traditional price of market risk

estimate is -0.127. In addition, the explanatory power of the model is really low.

Next we test the volatility-feedback model. As the variance is readily available, we can

directly estimate (6). The results in Table 4 show that, although the volatility-feedback is

highly significant and the explanatory power of the model is significantly higher (adjusted

R2 is 24.3 per cent), the price of market risk is still not found significant and its estimate is

negative (-0.638 with t-value -1.105). The results merely shows that there is some type of

relationship between ex post returns and ex ante variance.

Finally, we turn to our model. Before we can estimate the model, we estimate the variance

persistence parameter using an AR(1) specification. After that, we can estimate the sigma

multipliers and proceed with the tests of our baseline model in equation (26). Table 4 shows

that the implied variance exhibits a somewhat higher persistence than does the variance

implied by the MIDAS but on the other hand it is lower than that implied by the GARCH.

The results also provide strong support for our model. The price of market risk (2.636) is

statistically highly significant (t-value 7.199). This value is surprisingly close to the value

given by the MIDAS estimation for the same period.

The VIX provides us with an opportunity to test the model as a joint system of two

equations and thus avoiding the issues with two-step estimation. Combining equation (31) for

the conditional variance with equation (26) for the risk premium and using the cross-equation

restriction via equations (19) and (20), we can estimate the system, for example, with the

seemingly unrelated regression (SUR) method. SUR takes into account heteroskedasticity

and contemporaneous correlation in the errors across equations. The results are in line with

the results reported in Table 4. The lambda is almost the same, 2.553, but the t-value is

lower (5); however, it remains highly significant.12

12 We also estimated the system with the Generalized Method of Moments (GMM). Orthogonalizing on
the constant and lagged values of VIX (equations (26) and (31)) and contemporary values of VIX (equation
(31)), and using an iterative process for the weights, we obtained essentially the same results.
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4.4. Full model

Finally, we test our full model as given by equation (25). We estimate the model using

OLS with conditional variance estimates from the first-pass estimation. For the full sample,

we can test the model using the conditional variances based on the GJR-GARCH under the

t-distribution and based on MIDAS estimation. For the short 1990-2013 sample, we also

utilize the variances based on the VIX index. The results are reported in Table 5.

The results for the full sample (Panel A) show that the lambda is statistically significant

and greater than one using both approaches. The explanatory power of the models can also

be considered high, in any case higher than for the baseline model. Our second explanatory

variable, the change in the dividend growth rate, is statistically clearly significant as the

model implies. This result per se is not surprising, because a number of papers have found a

relationship between returns and dividends (see, e.g., Campbell and Schiller, 1988), although

the model here approaches the question from a slightly different perspective. The result is

in line with Lettau and Ludvigson (2005) who find evidence that the expected dividend

growth covaries with the expected returns. Our third explanatory variable, the change in

the risk-free rate, is also statistically significant (t-values are 2.281 and 2.320 for the two

models, respectively), and its coefficient is positive as suggested by our model.

The results for the post-1990 sample show patterns fairly similar to the full sample.

The explanatory power of the model is higher than that of the baseline model. Lambdas are

significant in all cases, although their values are somewhat lower than those from the baseline

model alone (cf. 1.968 vs. 2.826, when MIDAS estimates are used). Interestingly we can

again observe that lambda is estimated to be slightly higher for the post-1990 subsample.

On the other hand, the change in the risk-free rate is not statistically significant and its sign

is unexpectedly negative. This could be driven by the fact that the assumption of parallel

shifts in the term structure could be too strong for the sub-period in question. We tested

this by having changes in short and long-term risk-free rates separated into two variables.

However, there was no material change in the results. As such, a more complex approach

may be needed to model changes in the risk-free rates.

4.5. Additional considerations and robustness checks

It is interesting to compare the behavior of different variance estimates because doing

so can reveal how they react in different market conditions. Figure 1 shows annualized

conditional volatilities (i.e., the square root of the fitted annualized variance) from the GJR-

GARCH(1,1)-M and MIDAS estimations using the full sample from 1928 to 2013. The

correlation between the series is 0.589. The series show evidence that the MIDAS volatility
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is able to react much more quickly to market uncertainty, as one would expect due to its

use of mixed-frequency data. The MIDAS volatility has a higher standard deviation (8.77%

vs. 7.29%), even though the average conditional volatility is lower for the MIDAS series

(16.76% vs. 17.23%). When both series are compared to volatility estimates based on

the absolute realized returns, both volatility averages are higher than the mean of realized

absolute monthly returns (3.941% corresponding to 13.65% per annum) but their standard

deviation is lower than that of absolute returns (13.20%). Consequently, the new methods

indicate higher volatility, on average, but with lower variation.

[Place Figure 1 about here]

In Figure 2, we compare the volatility series estimated using data for the subsample from

1990 to 2013. For comparison, we have also included the values for the VIX. Again, we can

see that the series are highly correlated. The highest correlation is between the MIDAS and

the VIX (0.849), and the lowest is between MIDAS and the GJR-GARCH series (0.582).

Again, the MIDAS series shows higher variability than the GJR-GARCH series (6.20% vs

5.86%), but less than the VIX implied volatility (7.68%). The average volatility implied by

the VIX series (20.20%) is also clearly higher than that implied by the other series (14.91%

and 14.23% for GJR-GARCH and MIDAS, respectively).

[Place Figure 2 about here]

We continue by testing the robustness of the results of the traditional approach, most

notably the results in Panel A in Table 2. First, we re-run the tests using simple returns

instead of continuously compounded returns. This does not change the results in general.

For example, the GARCH(1,1)-M yields a lambda of 0.013 with a t-value of 1.623. The

GJR-GARCH(1,1)-M model yields the same results. Second, we modify the distribution

of the error. Using the GED-distribution instead of the t-distribution, the results do not

change markedly. For example, with the GJR-GARCH-M model, the lambda estimate is

0.080 with a t-value of 0.098. We also tested the model using the skewed t-distribution, and,

although the skewness parameter was significant, the lambda estimate was negative (-0.179)

and remained insignificant.

Next, we turn to the results for the new approach. Our main focus is on testing the

robustness of the results for our baseline model in Panel B of Table 2. As was the case with

the traditional approach, using simple returns does not change the results that much. For

example, the lambda estimated using the conditional variance from the GJR-GARCH(1,1)

model with t-distributed errors becomes 1.676 (t-value 20.994). Similarly, the results in

Table 5 are materially unchanged. Using a shorter subsample from 1990 to 2013, the lambda
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estimate becomes 2.826 (t-value 6.938), which is clearly greater than that estimated using

the traditional approach, -0.385 (t-value -0.162).

An obvious question is also whether the results are driven by our sample period. To

study this, we use a rolling estimation approach to estimate lambdas over all possible sample

periods with a fixed length. We begin the estimation with eighty year samples (giving us

72 possible samples, the last one beginning in December 1933) and then shorten the sample

period by ten years in each step until we have samples covering only 20 years. All possible

samples are considered leading to more samples for shorter sample periods. At the same

time, we analyze whether our results are driven by our specification for the GARCH model.

Ultimately, lambdas are estimated using both the traditional as well as the new, reverse

testing approach, first with the basic GARCH model with normally distributed errors, and

then with the GJR-GARCH model with normally as well as t-distributed errors. For all

cases, lambdas and their t-values, among others, are recorded.

We observe a number of well-known empirical regularities. The results from the GARCH-

type estimations are sensitive to the number of observations (length of the sample period) and

the sample period itself. A number of obvious convergence issues can be detected for samples

shorter than 60 years even for the simplest model.13 As expected, the issue is aggravated

with the use of more complex models. The traditional approach is slightly more sensitive to

these issues as it requires that the variance is also included in the mean equation. Obviously,

a number of these issues could be avoided by fine-tuning the estimation. Nonetheless, the

results clearly indicate that using too short sample periods can produce susceptible estimates

for lambda, and, at the minimum, one should always conduct robustness checks to guarantee

that the results are not driven by the sample in question.

Second, even with the simplest estimation setup, GARCH-M with normally distributed

errors, the traditional approach does not show a single significant lambda estimate using the

70- or 80-year samples; the new approach has nine significant lambdas out of seventy-two.

When we allow for the asymmetry in variance, the traditional approach is not doing any

better, whereas the new approach finds all of the lambdas to be statistically significant.

With 60-year samples, the situation is the same. In fact, the sample had to be shortened to

50 years to find even a single significant lambda with the traditional estimation approach.

This goes to show that having a longer sample period does not necessarily solve the total

volatility puzzle when the traditional approach is used.

When using the GJR-GARCH model, the traditional approach produces negative lamb-

13 These include, for example, issues with near singularity or convergence to a local maximum, which
typically manifested itself by an estimate that differs radically from the previous as well as the following
estimates.
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das whereas the new approach gives positive ones with only few negative lambdas. For

example, all traditional lambdas estimated using 70-year samples starting in July 1939 or

later are negative. The new approach does not show even a single negative lambda. Hence,

we can conclude that the main empirical result in this paper is not driven by the selection

of the sample period nor the choice of the GARCH specification.

We also compare our results with Ghysels et al. (2013). Using MIDAS estimation, they

show that the traditional lambda varies considerably depending on the sample period. For

example, using subsamples from 1928 to 1963 and from 1964 to 2000, their lambda estimates

were -1.0615 and 3.4646, respectively. Neither of the lambdas was significant. Estimating

our baseline model with the same subsamples using the MIDAS approach as given in Table

3 gives us lambda estimates of 1.432 (t-value 6.497) and 1.103 (t-value 3.063) for the first

subsample and the second subsample. The estimates are quite similar to and in line with

the lambda estimate over the whole sample period (1.695), although our rolling estimation

does confirm the finding in Ghysels et al. (2013) that lambda estimates vary over time.

A related question is whether our lambda estimate is sensitive to the sampling frequency

and the length of the return measurement horizon. To test this, we estimate the traditional

and the new models with the GJR-GARCH as shown in Table 2, assuming the t-distribution

with one, two, five, and ten day non-overlapping returns over the same sample period. The

results from the traditional model show negative estimates for lambda for all but the ten-day

returns (e.g., using one-day returns, the lambda estimate is -0.783 with a t-value of -1.118).

In all cases, the values are insignificant. The results from the new model, on the other hand,

show that lambdas are significant in all cases and that the estimates are aligned. One-day

returns produce the lowest value for lambda (0.920 with a t-value of 4.889). Two-day returns

yield the highest lambda (2.236 with a t-value of 3.402), followed by five-day returns (1.847

with a t-value of 16.439) and ten-day returns (1.779 with a t-value of 6.679). Overall, our

results show that our model is able to yield believable estimates of the lambda even when

estimated using short-horizon returns.

Our final robustness check studies the effect of the speed of variance convergence on the

results. To test this, we take the results from last row in Table 4 and test different values

for the variance persistence φ parameter. The results show that if the speed of convergence

decreases to 0.7, the lambda estimate increases to 4.081, whereas, conversely, a truly high

speed of convergence of 0.95 gives us a lambda estimate of 0.715, ceteris paribus. Yet, the

traditional model yields a negative lambda using the same data. This highlights the fact

that testing the return-variance relationship should take into account the long-term behavior

of the variance.
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5. SUMMARY AND CONCLUSIONS

In this paper, we develop a new approach for testing conditional asset pricing models.

The new reverse testing approach avoids the issues that arise when realized returns or their

time series forecasts are used as a proxy for the expected returns in asset pricing tests. When

the new approach is applied to the Merton (1973, 1980) asset pricing model and combined

with the assumption of the mean-reverting conditional variance, it suggests an empirical

model that links the realized equity premium to the price of market risk and to changes in

the conditional variance and its long-term persistence. In addition, the model implies that

the realized returns are also related to the changes in expected dividend growth rate and

risk-free rate.

Empirically, we study the relationship between the conditional equity market risk pre-

mium and variance using data for the US stock market from 1928 to 2013. For the empirical

estimation of the model, we compare the traditional and the volatility-feedback testing ap-

proaches against the new approach introduced in this paper. We utilize and compare three

different approaches to model the conditional variance. Our first specification utilizes the

commonly used GARCH-M framework. In addition, we utilize the MIDAS approach of

Ghysels et al. (2005, 2013) and the implied variance (VIX-index) observed on the options

market.

The results show that neither the traditional nor the volatility-feedback approach give

support for the positive relationship between conditional variance and equity premium. Price

of market risk is found to be close to zero, and at times even negative. On the other hand,

the lambda estimates from the new model are consistently statistically and economically

significant, positive, and higher than those estimated using the traditional approach giving

strong support for the Merton (1973, 1980) model. The results from the new approach are

also less sensitive to the timing of the sample and its length. In addition, the approach works

even on return measurement horizons shorter than one month. We also find support for the

importance of the changes in investors’ view on dividend growth, but less so on the risk-free

rate. Overall, the results give support for the new reverse testing approach.

There are a number of interesting issues that could be studied with the approach in-

troduced in this paper. It allows one to revisit some of the empirical tests on conditional

asset pricing models. Namely, the conditional APMs have yet to fulfill their full potential

in explaining some of the issues unexplained by the unconditional CAPM. It is also fairly

easy to extend the model tested in a number of ways. For example, one could allow for

time-varying price of risk or add other priced risk factors into the model. In addition, one

could test alternative ways to model the dividend growth rate or risk-free rate and its term

30



structure. These questions are left for future study.
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Fig. 1. Conditional volatilities from GJR-GARCH and MIDAS estimations from January
1928 to December 2013. All values are per annum.
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Fig. 2. Conditional volatilities from GJR-GARCH and MIDAS estimations using the 1990-
2013 data together with the month-end VIX-index values from January 1990 to December
2013. All values are per annum.
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Table 4: Baseline model with VIX variance. OLS estimates for the price of market risk
are reported for different models. The price of market risk (λm) is first estimated using
the traditional approach of regressing excess market returns on the conditional variance
for the same period (available at the beginning of the period). Then the same regression
is augmented by the shock in the variance variable, measured as the difference between
realized variance and conditional variance. Finally, the price of market risk is estimated
using the new approach where excess returns are regressed on the first difference in the
conditional variance as given by equation (26). Parameters required for the sigma-multiplier
are estimated running an AR(1) model for the conditional variance. The estimation is
conducted using monthly data from January 1990 to December 2013 (288 observations).
Market returns are measured by the CRSP total return index. Realized variance is the sum
of daily return squared within a month. Implied variance is the VIX-index squared divided
by twelve. Returns are continuously compounded and in excess of the risk-free rate. The
Newey-West (1987) adjustment has been used to calculate standard errors. t-values are
provided in parentheses. Coefficients significantly (10%, 5% or 1%) different from zero are
marked with one, two, or three asterisks, respectively.

AR(1) parameters
Constant λm γm φ0 φ1 Adj. R2

Traditional approach 0.006 −0.127 −0.003
(1.312) (−0.092)

Volatility feedback 0.001 −0.638 −6.252∗∗∗ 0.243
approach (0.280) (−1.104) (−5.627)

New approach −0.005 ∗ ∗ 2.636∗∗∗ 0.001∗∗∗ 0.807∗∗∗ 0.448
(−2.265) (7.199) (3.385) (10.905)
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Table 5: Results for the full model under the new approach. OLS estimates for the equa-
tion (25) are given using different specifications for the conditional variance. Parameter b2

corresponds to the price of risk parameter (λm). In panel A, variance estimates from GJR-
GARCH(1,1) and MIDAS are employed using a sample from January 1928 to December
2013 (1,032 observations). In panel B, variance estimates from GJR-GARCH(1,1) and MI-
DAS as well as the VIX index are employed using a sample from January 1990 to December
2013 (288 observations). ∆g is the first difference in the dividend growth rate per annum as
given by the continuously compounded growth of the dividends paid during the past twelve
months compared to dividends paid a year ago. ∆rf is the first difference in the long-term
US government bond yield. The Newey-West (1987) adjustment with one lag has been used
to calculate the standard errors. t-values are provided in parentheses. Coefficients signif-
icantly (10%, 5% or 1%) different from zero are marked with one, two, or three asterisks,
respectively.

Constant ∆σ2
t ∆g ∆rf

b1 b2 b3 b4 Adj. R2

Panel A: 1928-2013

GJR-GARCH(1,1) + OLS 0.002 1.247∗∗∗ 0.347∗∗∗ 1.187 ∗ ∗ 0.556
+ t-distributed errors (1.534) (8.037) (9.824) (2.281)

MIDAS 0.001 1.150∗∗∗ 0.435∗∗∗ 1.349 ∗ ∗ 0.455
(0.738) (4.396) (12.573) (2.320)

Panel B: 1990-2013

GJR-GARCH(1,1) + OLS 0.002 2.037∗∗∗ 0.246∗∗∗ −1.158 0.591
+ t-distributed errors (1.181) (6.977) (6.459) (−0.976)

MIDAS 0.001 1.968∗∗∗ 0.387∗∗∗ −1.138 0.441
(0.670) (5.259) (8.790) (−1.528)

VIX −0.002 0.524∗∗∗ 0.268∗∗∗ −0.856 0.560
(−1.011) (5.420) (6.232) (−0.647)
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